
International Journal of Heat and Mass Transfer 48 (2005) 3485–3492

www.elsevier.com/locate/ijhmt
A scaling analysis to characterize thermomagnetic convection

Achintya Mukhopadhyay a, Ranjan Ganguly b,c, Swarnendu Sen a,
Ishwar K. Puri d,*

a Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032, India
b Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

c Department of Power Engineering, Jadavpur University, Kolkata 700 032, India
d Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Received 28 October 2004; received in revised form 25 March 2005

Available online 17 May 2005
Abstract

Thermomagnetic convection is characterized using scaling arguments. We consider a square enclosure filled with a

ferrofluid that is under the influence of an external magnetic field created by a line dipole. The height-averaged Nusselt

number scales with the magnetic Rayleigh number as Nu � Ra0.25m . This result is in excellent agreement with predictions

obtained from detailed numerical simulations. Use of the Langevin equation of ferrofluid magnetization identifies an

optimum enclosure height for which the Nusselt number reaches a maximum value for a given line dipole strength.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Thermogravitational or free convection occurs under

many circumstances and is used in numerous applica-

tions. However, its effectiveness greatly diminishes at

small length scales as other effects become dominant.

Buoyancy-induced convection ceases to be effective in

reduced gravity, e.g., in spacecraft. Thermomagnetic

convection is a feasible method to augment or suppress

free convection for small length scale applications or in

hypogravity [1,2], but it is not yet fully characterized. A

thorough understanding of the relation between an

applied magnetic field and the resulting heat transfer is

necessary for the proper design and control of thermo-

magnetic devices.
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Finlayson [1] first discussed thermomagnetic convec-

tion and provided a critical stability parameter beyond

which this form of convection occurs. Schwab et al. [3]

conducted an experimental investigation of the convec-

tive instability in a horizontal layer of ferrofluid and

characterized the influence of the magnetic Rayleigh

number on the Nusselt number. Krakov and Nikiforov

[4] addressed the influence of the relative orientation of

the temperature gradient and magnetic field on thermo-

magnetic convection in a square cavity. Yamaguchi

et al. [5,6] performed experiments in a square enclosure

and characterized the heat transfer in terms of a mag-

netic Rayleigh number.

However, all of these investigations assumed uniform

magnetic fields, which, in most practical heat transfer

applications, are not generally realizable. Moreover,

the gradient associated with a nonuniform magnetic

field is an important component of the thermomagnetic

force. Therefore, while these previous studies are signifi-

cant, they do not fully describe the influence of magnetic
ed.
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Nomenclature

B magnetic field (T)

Cp specific heat at constant pressure (kJ/kg K)

D enclosure height (m)

h heat transfer coefficient (W/m2)

H defined in Eq. (2) (A/m)

Jf free current density (A/m2)

k thermal conductivity (W/mK)

kB Boltzmann constant (1.3807 · 10�23 J/K)

m magnetic moment (strength) per unit length

of line dipole (A m)

M magnetization (A/m)

Nu Nusselt number (hD/k) (dimensionless)

Pr Prandtl number (m/a) (dimensionless)

Ram magnetic Rayleigh number (dimensionless)

t time (s)

T temperature (K)

u x-component of velocity (m/s)

v y-component of velocity (m/s)

V velocity vector (m/s)

Greek symbols

a thermal diffusivity (m2/s)

bq fluid compressibility (� 1
q
oq
oT ) (K

�1)

v0 magnetic susceptibility at reference tempera-

ture (dimensionless)

vm magnetic susceptibility at operating temper-

ature (dimensionless)

dT thermal boundary layer thickness (m)

/ coordinate direction

l viscosity (Pa s)

k Langevin parameter

l0 permeability of vacuum (1.257 · 10�6 N/A2)

m kinematic viscosity (m2/s)

q density (kg/m3)
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field gradients for practically realizable thermomagnetic

convection applications. Tangthieng et al. [7] provided a

numerical analysis in the presence of a nonuniform field

(such as one produced by a permanent magnet), but with

two magnetic monopoles.

A few other researchers have considered spatially

nonuniform magnetic fields during experimental or

numerical investigations, but did not completely repre-

sent the variations in those fields [8–12]. In some cases,

the field descriptions were inconsistent [7,13] since they

were not in accord with the Maxwell�s equations of elec-
tromagnetism. Consequently, it is not entirely appropri-

ate to employ their correlations between the magnetic

field attributes and the resulting heat transfer to design

applications. Odenbach [14,15] performed elegant experi-

ments to demonstrate the influence of the thermomag-

netic destabilization force in microgravity using an

azimuthal magnetic field with a radial gradient (such

as one produced by a single current-carrying conductor).

Although this magnetic field is realistic, the heat-transfer

enhancement as a function of magnetizing current was

not characterized in that investigation.

Recently, Ganguly et al. [2,16] addressed these issues

by simulating free and forced thermomagnetic convec-

tion by considering a two-dimensional magnetic field

that is similar to one created by a practical line-source

dipole. They have shown that magnetic effects on the

corresponding flow are localized. They found that while

the addition of dipoles is beneficial for heat transfer,

since they create additional recirculation zones, the

enhancement in the overall heat transfer depends on

the net magnetizing current alone. Wang and Waka-

yama [17] investigated natural convection with non-con-
ducting and low-conducting diamagnetic fluids with

magnetic fields that had different orientations. Tagawa

et al. [18] and Kim and Hyun [19] investigated the inter-

action of thermogravitational and thermomagnetic con-

vection in cubical enclosures under the influence of a

magnetic field produced by a pair of electrical coils

placed parallel to one pair of faces of the cavity.

Ganguly et al. [16] have shown that the thermomag-

netic convection becomes more effective at small length

scales, which makes this mode of heat transfer poten-

tially attractive for MEMS applications. However,

velocity and temperature measurements at the micro-

scale are challenging. Therefore, some laboratory-scale

experiments conducted at larger length scales will need

to be appropriately scaled down to extrapolate experi-

mental observations to actual microscale applications.

Unfortunately, none of the above work adequately dis-

cusses scaling effects for thermomagnetic convection.
2. Formulation

Our configuration is similar to that of Ganguly et al.

[16]. Fig. 1(a) presents schematic diagrams of the idea-

lized configurations that we have investigated. The rect-

angular cavity in Fig. 1(a) extends to infinity (i.e., it has

a large depth) in the third dimension such that the flow

that develops inside it is two-dimensional. The left hand

side vertical wall is maintained at a temperature of Th

while the other vertical wall is an isothermal heat sink

at Tc. The upper and lower walls are adiabatic. A line

dipole, which provides the external magnetic field, is

placed adjacent to the lower wall halfway along the



Fig. 1. Schematic diagram of the (a) investigated configuration, and (b) external magnetic field distribution.
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enclosure length and at a certain height below its inner

surface [2,16]. The resulting field shown in Fig. 1(b) is

two-dimensional. It approximates the field produced

by an edge-dipole permanent magnet or an electromag-

net that is created by a rectangular current-carrying loop

of very high aspect ratio (held parallel to the bottom

wall of the enclosure). Other realistic fields can also be

produced by suitably arranging a number of these line

dipoles [20].

The ferrofluid is assumed to be electrically noncon-

ducting so that there is no electromagnetic free current

in the flow. We neglect stray electric field effects in

the ferrofluid and assume that the magnetic field varia-

tion caused by the temperature gradients within the

fluid is negligible [21] as compared to the magnetic

field gradient itself. This noninductive approximation

[22] is valid since it will become evident in the next sec-

tion that for the ferrofluid properties and magnetic field

distribution considered, jrjHk � qbDT=L. The mag-

netic field conforms to the Maxwell�s relations in static

form as

r � B ¼ 0;

r�H ¼ 0.
ð1Þ

In the above equation, H and B are related through

the expression

H ¼ 1

l0ð1þ vmÞ
B. ð2Þ

The magnetic field inside the fluid due to the line

dipole [2,16]:

B ¼ l0ð1þ vmÞm
sin/
r2

er �
cos/
r2

e/

� �
. ð3Þ
The polar coordinate system and the origin of the

radius vector r are indicated in Fig. 1(a).

Of the two limiting cases of magnetic fluid behavior

discussed by Berkovsky [23], we have considered a

fluid of the type for which the total magnetocrystal-

line anisotropy energy of the nanoparticles is much

lower than their thermal fluctuation energy. This implies

that the magnetic moment of a domain is not rigidly

fixed to the particle body and, consequently, the mag-

netic field does not influence the particle orientation.

Hence, the magnetoviscous effect and consequent aniso-

tropy in other fluid properties are negligible [24]. Since

particle rotation (which occurs in a rotational flow-

field) does not alter the orientations of their magnetic

moments, the overall magnetic moment of the fluid is

always aligned with the external magnetic field. There-

fore, the fluid is also free from magnetodissipation

[25].

Assuming constant thermophysical properties, the

governing equations for conservation of mass, momen-

tum and energy are

r � V ¼ 0; ð4Þ

q
oV

ot
þ V � rV

� �
¼ �rp þ lr2Vþ ðM � rÞB; ð5Þ

qCp
oT
ot

þ V � rT
� �

¼ kr2T . ð6Þ

The last term in Eq. (5) represents the Kelvin body force

[26,27] (also, please see Appendix A). For small varia-

tions in temperature (to which we restrict this analysis),

the magnetization of the fluid, M, can be expressed in a

linearized form as
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M ¼ M� þ oM
oT

� �
H

ðT � T �Þ þ oM
oH

� �
T

ðH � H �Þ. ð7Þ

In the above equation, the quantities with the super-

script * denote values at an equilibrium magnetization

about which the linearization is performed. Within the

range of validity of the linearization, the magnetization

vector, M and H can be related through the state rela-

tion [2]

M ¼ vmH. ð8Þ

The susceptibility, vm is assumed a function of tem-

perature alone. Again, for a small temperature change,

the linearized relation

vm ¼ v0½1þ bqðT � T �Þ��1 ð9Þ

is applicable. Hence, the Kelvin body force

fM ¼ l0vmH � rfð1þ vmÞHg

¼ 1

2
l0vmð1þ vmÞrðH �HÞ þ l0vmðH � rvmÞH. ð10Þ

Using Eq. (9) and imposing the condition

bq(T � T*)� 1 analogous to the Boussinesq approxi-

mation for thermogravitational convection, the follow-

ing approximations may be used due to the small

variations in temperature:

vm ¼ v0½1þ bqðT � T �Þ��1 	 v0½1� bqðT � T �Þ�; ð11aÞ

rvm ¼ �v0½1þ bqðT � T �Þ��2bqrT

	 � v0
2
½1� 2bqðT � T �Þ�bqrT ; ð11bÞ

and

v2m ¼ v20½1þ bqðT � T �Þ��2

	 v20½1� 2bqðT � T �Þ�. ð11cÞ

Substituting Eqs. (11a)–(11c) in Eq. (10), we obtain

fM ¼ 1

2
l0v0½1� bqðT � T �Þ�rðH �HÞ

þ 1

2
l0v

2
0½1� 2bqðT � T �Þ�rðH �HÞ

þ l0v
2
0bq½1� 3bqðT � T �Þ�ðH � rT ÞH. ð12Þ

Eq. (13) can be further simplified considering the

order of magnitude of individual terms. Considering

that v0 � O(0.1), we can conclude that v20 6 v0. A repre-

sentative susceptibility is assumed from the APG E26

ferrofluid data sheet that has also been used by Tynjälä

et al. [21]. This enables us to neglect the second term in

comparison with the first. Similarly, since bq(T � T*)�
1, the last term can be simplified to l0v

2
0bqðH � rT ÞH.

Consequently, the Kelvin body force simplifies into the

form
fM ¼ 1

2
l0v0½1� bqðT � T �Þ�rðH �HÞ þ l0v

2
0bqðH � rT ÞH.

ð13Þ

The first term in Eq. (13) is analogous to the pressure

term and has been referred to as ‘‘magnetostatic pres-

sure’’ [2]. Defining an effective pressure as p� ¼
p � l0v0

2
H 2, the momentum equation has the final form

q
oV

ot
þ qV � rV

¼ �rp� þ lr2V� 1

2
l0v0bqðT � T �ÞrðH �HÞ

þ l0v
2
0bqðH � rT ÞH. ð14Þ
3. Scaling

Expressing the momentum equations in incompress-

ible form and assuming constant viscosity in terms of

scalar components, we obtain the relations

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ � 1

q
op�

ox
þ m

o
2u
ox2

þ o
2u
oy2

� �

� l0v0
2q

bqðT � T �Þ oH
2

ox

þ
l0v

2
0bq

q
Hx

oT
ox

þ Hy
oT
oy

� �
Hx ð15Þ

and

ov
ot

þ u
ov
ox

þ v
ov
oy

¼ � 1

q
op�

oy
þ m

o2v
ox2

þ o2v
oy2

� �

� l0v0
2q

bqðT � T �Þ oH
2

oy

þ
l0v

2
0bq

q
Hx

oT
ox

þ Hy
oT
oy

� �
Hy . ð16Þ

Eliminating p� from Eqs. (15) and (16),

o

oy
ou
ot

þ u
ou
ox

þ v
ou
oy

� �
� o

ox
ov
ot

þ u
ov
ox

þ v
ov
oy

� �

¼ m
o

oy
o2u
ox2

þ o2u
oy2

� �
� o

oy
o2v
ox2

þ o2v
oy2

� �� �

� l0v0
2q

bq

oH 2

ox
oT
oy

� oH 2

oy
oT
ox

� �

þ
l0v

2
0bq

q
Hx

oT
ox

þ Hy
oT
oy

� �
oHx

oy
� oHy

ox

� �

þ
l0v

2
0bq

q
Hx

o

oy
Hx

oT
ox

þ Hy
oT
oy

� ��

�Hy
o

ox
Hx

oT
ox

þ Hy
oT
oy

� ��
. ð17Þ

In Eq. (17), the terms on the left hand side are inertia

terms while the first term on the right hand side repre-



Fig. 2. Comparison of the Nusselt number predicted by the

scale analysis presented herein and previous numerical simula-

tions [16].
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sents the viscous effects. The last three terms on the right

hand side are various thermomagnetic terms.

Analogous to thermogravitational convection in

enclosures, the momentum and energy transfer during

strong thermomagnetic convection also occurs through

a thin boundary layer near each vertical wall. Conse-

quently, we have adopted the local thickness of the ther-

mal boundary layer dT(y) as the length scale for all

variations in x-direction while the height of the enclo-

sure D is used as the length scale for all variations in

the y-direction. Following a similar scale analysis for

buoyancy-driven convection in enclosures by Bejan

[28], the dominant inertia and viscous terms are o2v
otox �

v
dT t

and m o3v
ox3 � m v

d3T
.

The scaling of the thermomagnetic terms requires

inspection of the configuration. For a magnetic field

induced by a line dipole, as reported in Ganguly et al.

[2,16], the relevant length scales for variations in H (or

H2) are the width and height of the enclosure. Therefore,

H has been scaled with m
D2. For configurations where the

variation in H is of the same order as that in H itself, the

last two terms in Eq. (17) are clearly much smaller than

the first thermomagnetic term. This has also been

observed through detailed numerical simulations [16].

However, for configurations where the entire domain

is subjected to nearly uniform magnetic fields, the last

two terms will determine the order of the thermomag-

netic force. Using the above length scales, the dominant

thermomagnetic term is of the order of
l0v0bq

2q
m2DT

dTD5
.

The ratio of the inertia to viscous term is � d2T =mt. Since
dT �

ffiffiffiffi
at

p
[28], this ratio is �Pr�1. Hence, for fluids with

Pr > 1, the viscous effects must be balanced with the

thermomagnetic terms. This is the range of Pr of interest

to us when considering oil-based or water-based

ferrofluids.

The balance between viscous and thermomagnetic

terms in Eq. (17) yields

v �
l0v0bqDTm

2d2T
qmD5

. ð18Þ

After the initial transient phase, the balance between

advection and diffusion in the context of the energy

equation implies that

v
DT
D

� a
DT

d2T
. ð19Þ

Substituting Eq. (18) in Eq. (19),

dT � D
qmaD2

l0v0bqm2DT

� �1=4

� DRa�0.25
m ; ð20Þ

where, as defined by Ganguly et al. [16], the magnetic

Rayleigh number

Ram ¼
l0v0bqm

2DT

qmaD2
. ð21Þ
Using the convective heat transfer coefficient, we

have the relation hDT � k DT
dT
. Hence, the order of magni-

tude for the average Nusselt number

Nu � hD
k

� D
dT

� Ra0.25m . ð22Þ
4. Comparison with numerical simulations

The predictions of the scale analysis, described

above, were compared with the numerical simulations

of Ganguly et al. [16]. The height-averaged Nusselt num-

bers from that investigation are compared with the pre-

dictions of Eq. (22) in Fig. 2. The results are in excellent

agreement at higher magnetic Rayleigh numbers

(Ram P 106), but some deviation is observed for lower

Rayleigh numbers. This is expected, since at low Ray-

leigh numbers, the transport is diffusion dominated. In

this regime, the scale analysis, which assumes the exis-

tence of thin boundary layers, is not strictly applicable.

The scale analysis, when extended to low Rayleigh num-

bers, exaggerates the effect of advection and, conse-

quently, overpredicts the Nusselt number as observed

from Fig. 2.
5. Implications for microscale applications

Actual MEMS applications involve length scales of

the order of 100 lm or less, while detailed high resolu-

tion field measurements involving length scales smaller

than �5 cm are difficult to characterize due to insuffi-

cient resolution. Consequently, mesoscale laboratory



Fig. 3. Variation of the (a) magnetic Rayleigh number and

(b) Nusselt number with respect to the enclosure height. The

representative dipole strengths are m1 = 0.013 A m, m2 = 1.3

A m and m3 = 130 A m.
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measurements might need to be scaled down by a factor

of 1000 or larger. Considering the nonlinear dependence

of the Rayleigh number and the Nusselt number on the

length scale, the scaling of heat transfer for these config-

urations requires careful consideration. Furthermore,

since thermomagnetic convection relies on the tempera-

ture dependent ferrofluid susceptibility, the magnetic

saturation of commercially available magnetic fluids

presents a limitation for practical applications (e.g.

Bsat = 60 mT for an EMG 901 type ferrofluid [29]). Once

a ferrofluid is magnetically saturated, strengthening the

magnetic field does not enhance thermomagnetic con-

vection. Therefore, the scaling analysis must be suitably

modified.

The magnetization of dilute ferrofluids can be

expressed by Langevin�s equation [30] M = uMsat

(cothk � 1/k), where u denotes the volume fraction of

the solid nanoparticles (	3%), Msat the saturation mag-

netization of the bulk material of the particles,

k = l0mpH/kBT the Langevin parameter, and mp the

magnetic moment of individual magnetic nanoparticles.

Assuming that the Langevin equation for particle mag-

netization is applicable and that the particles are nearly

saturated for k = 100 (i.e. when (cothk � 1/k) 	 0.99),

the value of H that saturates an EMG 901 ferrofluid is

about 1.3 · 106 A/m. Hence, since H � m/D2, a combi-

nation of m and D values can be used to produce ther-

momagnetic convection as long as m/D2 < 1.3 · 106.

With this upper limit for m/D2, the value of Ram also

has an upper bound.

For fixed value of dipole strength m, Eq. (21) shows

that Ram decreases linearly as D2 is increased. Thus, a

set of parallel curves that relate Ram for m1 =

0.013 A m, m2 = 1.3 A m and m3 = 130 A m with vary-

ing D are available, as presented in Fig. 3a. Proceeding

along each of these curves, a point where m/D2 exceeds

the saturation limit is reached as the length scale is

decreased. The area above the curve at this point repre-

sents an impracticable space due to the magnetic satura-

tion of the ferrofluid. Eq. (21) also indicates that Ram
increases linearly with D2 for fixed values of m/D2. Thus,

Ram,max, which is the maximum achievable value of Ram
without saturating the ferrofluid, scales with D2. The dif-

ferent values for Ram,max for varying m are connected by

a curve in Fig. 3a that has a positive slope with respect

to D. The results in Fig. 3 use representative values [16]

for v0 = 0.1, bq = 5.6 · 10�4/K, q = 1180 kg/m3, m =
5.93 · 10�6 m2/s and a = 1.19 · 10�7 m2/s.

Eq. (22) establishes a correspondence between Ram
and Nu. Thus, each of the Ram vs. D curves also corre-

sponds to one for Nu vs. D as shown by the set of curves

for m1 = 0.013 A m, m2 = 1.3 A m and m3 = 130 A m

presented in Fig. 3b. This implies that as the enclosure

dimension is reduced, Ram and Nu increase for a partic-

ular line dipole (characterized by a specific m value) until

m/D2 reaches the maximum permissible value for that
ferrofluid. Furthermore, since Ram,max scales linearly

with D2, the corresponding Nusselt number value Numax

also increases for larger dimensions (shown by the solid

line with positive slope in Fig. 3b). For a given dipole

strength, if D decreases such that the Numax limit is

reached, a further reduction in length scale reduces the

thermomagnetic effect. If the entire ferrofluid inside

the enclosure becomes saturated, then Nu equals zero,

i.e., there is no convection. Therefore, Fig. 3(b) provides

the basis for an optimum enclosure dimension for a

particular dipole strength (and vice versa) for which

the heat transfer augmentation is maximum. Since

saturation progresses from the regions close to the

dipole towards those away from it, the corresponding

reduction in Nusselt number is gradual. How saturation

progresses inside the enclosure and to what extent it

influences the Nusselt number is beyond the scope of

this analysis.
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6. Conclusions

Thermomagnetic heat transfer in a two-dimensional

enclosure filled with a ferrofluid is predicted using a

scaling analysis. We have assumed small variations in

temperature, so that linearization, analogous to the

Boussinesq approximation for thermogravitational con-

vection, becomes possible. The results show that the

Nusselt number scales with Ra0.25m , which is in excellent

agreement with the predictions of detailed numerical

simulations. Imposition of Langevin�s relation for a

specified value of m leads to an optimum dimension

for which the heat transfer rate is maximized.
Appendix A

From an electrodynamics perspective, the Kelvin

body force in a magnetic medium occurs due to the mag-

netization (the bound current) M and the magnetic field

B. A detailed discussion regarding the magnetic body

force term can be found in Ref. [26], where the expres-

sion of magnetic body force density is written in the

form

F ¼ l0ðM � rÞHþ l0Jf �Hþr l0

2
M �M

� �
. ðA:1Þ

In this case, the free current density Jf is zero in the

ferrofluid. The last term in Eq. (A.1) vanishes if the con-

trol surface encloses the magnetizable body completely.

Consequently, the expression for the magnetic body

force is consistent with that used in Refs. [1] and [4].

The same expression is also recovered when one consid-

ers the total magnetic body force integrated over the sur-

face of the magnetizable body (i.e., for the case when the

control surface encloses the entire body and passes

through a region where M = 0). However, our analysis

considered an arbitrary control volume which can hypo-

thetically be fully submerged within the ferrofluid. Thus,

the last term in Eq. (A.1) is not necessarily zero and the

relevant expression for the body force density is that

described by Eq. (5). This is also in accord with the

expression used in Ref. [27].
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